抛物线的交点公式是什么:
1、一般式:y=aX2+bX+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2) (a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
2、抛物线四种方程的异同
共同点:
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2对称轴为y轴时,方程的右端为±2py,方程的左端为x^2
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
切线方程:
抛物线y2=2px上一点(x0,y0)处的切线方程为: 
抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。
抛物线的交点公式是什么
抛物线y=ax²+bx+c 与x轴的交点坐标为((-b±√Δ)/2a,0) 【Δ为ax²+bx+c=0判别式 Δ=b²-4ac】这之中,实际只是令 y=0 ,求x此时的取值,并视之为横坐标,取纵坐标为0,即得交点坐标