因为arctanx等价于x是当x趋近于0的时候arctanx才等价于x
当x趋近于正无穷是arctanx等于π/2
当x趋近于负无穷是arctanx等于-π/2
所以不等价与x(∞)
利用等价无穷小替换求极限时要特别注意趋近过程
扩展资料:
若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。所谓关系R 就是笛卡尔积 A×A 中的一个子集。
A中的两个元素x,y有关系R,如果(x,y)∈R。常简记为 xRy。
自反: 任意x属于A,则x与自己具有关系R,即xRx
对称: 任意x,y属于A,如果x与y具有关系R,即xRy,则y与x也具有关系R,即yRx
传递: 任意x,y,z属于A,如果xRy且yRz,则xRz
x,y具有等价关系R,则称x,y R等价,有时亦简称等价
arctanx方可以化成什么
tanx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2)。两者的转换公式为y=tanxx=arctany。
arctanx和tanx两者的区别:
1、两者的周期性不同
(1)tanx为周期函数,最小正周期为π。
(2)arctanx不是周期函数。
2、两者的单调区间不同
(1)tanx有单调区间(-π/2+kπ,+π/2+kπ),k为整数,且在该区间为单调增函数。
(2)arctanx为单调增函数,单调区间为(-∞,﹢∞)
arctanx=1/(1+x²)。anx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R。arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2)。
tanx与arctanx的区别
1、两者的定义域不同
(1)tanx的定义域为{x|x≠(π/2)+kπ,其中k为整数}。
(2)arctanx的定义域为R,即全体实数。
2、两者的值域不同
(1)tanx的值域为R,即全体实数。
(2)arctanx的值域为(-π/2,π/2)。