(b)>0,令

E={x|f(x)≤0,x∈[a,b]}。

由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理

存在ξ=supE∈[a、b]

下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a、b)),事实上

(i)若f(ξ)<0,则ξ∈[a、b),由函数连续的局部保号性知

存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE

这与supE为E的上界矛盾

(ii)若f(ξ)>0,则ξ∈(a,b],仍由函数连续的局部保号性知

存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ

这又与supE为E的最小上界矛盾。

综合(i)(ii),即推得f(ξ)=0。

导数零点定理公式推导过程

导数公式推导过程如下:

y=a^x,△y=a^(x+△x)-a^x=a^x(a^△x-1),△y/△x=a^x(a^△x-1)/△x。

如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。

所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β。

显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

常用导数:

y = C(C为常数) , y' = 0。

y=xn, y' = nxn-1。

y = ax, y' = lna*ax。

y = ex, y' = ex。

y = logax , y' = 1 / (x*lna)。

y = lnx , y' = 1/x。

y = sinx , y' = cosx。

y = cosx , y' = -sinx。

y = tanx , y' = 1/cos2x = sec2x。

y = cotx , y' = -1/sin2x= -csc2x。

y = arcsinx , y' = 1 / √(1-x2)。

y = arccosx , y' = - 1 /√(1-x2)。

y = arctanx , y' = 1/(1+x2)。