公式有1/n(n+1)=1/n-1/(n+1)、1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]、1/n(n+1(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]、1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n!。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的,通项分解(裂项)倍数的关系,通项分解(裂项)倍数的关系,裂项法求和是分解与组合思想在数列求和中的具体应用。
原创 | 2022-12-06 16:08:15 |浏览:1.6万
公式有1/n(n+1)=1/n-1/(n+1)、1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]、1/n(n+1(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]、1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n!。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的,通项分解(裂项)倍数的关系,通项分解(裂项)倍数的关系,裂项法求和是分解与组合思想在数列求和中的具体应用。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com