所谓“dx/dt的导数”,需要指明对哪个变量求的导数,如果是对变量t求的导数,则是(d/dt)(dx/dt)=d(dx/dt)/dt=(dd)x
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
原创 | 2022-11-23 16:29:33 |浏览:1.6万
所谓“dx/dt的导数”,需要指明对哪个变量求的导数,如果是对变量t求的导数,则是(d/dt)(dx/dt)=d(dx/dt)/dt=(dd)x
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com