arctanx的值
arctanx的值域是:(-π/2,π/2)
正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。正切函数是反三角函数的一种。
由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。
引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。
(-π/2,π/2)。arctanx是反正切函数,其定义域是R,反正切函数的值域为(-π/2,π/2)。anx是正切函数,其定义域是{x|x≠(π/2)+kπ,k∈Z},值域是R
arcx定义域
反正弦函数y=arcsinx
表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
反余弦函数y=arccosx
表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1] , 值域[0,π]。
反正切函数y=arctanx
表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反余切函数y=arccotx
表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
反正割函数y=arcsecx
表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
反余割函数y=arccscx
表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。
定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。