不存在。
1、利用有原函数存在定理:原函数存在定理:若f(x)在[a,b]上连续,则必存在原函数。
2、如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点,那么包含此间断点的区间内,一定不存在原函数
3、如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
原创 | 2022-11-13 13:07:15 |浏览:1.6万
不存在。
1、利用有原函数存在定理:原函数存在定理:若f(x)在[a,b]上连续,则必存在原函数。
2、如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点,那么包含此间断点的区间内,一定不存在原函数
3、如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com