以下问题为例,求此初值问题的解:
y'sinx=ylny,x=π/2时y=e
解: y'sinx=ylny
即dy/(ylny)=dx/sinx
dlny/lny=dx/sinx
所以得到
ln|lny|=ln|cscx-cotx|+c
因为y(π/2)=e
带入得到
C=0
所以得到
ln|lny|=ln|cscx-cotx|
所以|lny|=|cscx-cotx|=|tan(x/2)|
所以y=e^(tan(x/2))
也可以有y=e^(-tan(x/2))
原创 | 2023-03-01 16:19:16 |浏览:1.6万
以下问题为例,求此初值问题的解:
y'sinx=ylny,x=π/2时y=e
解: y'sinx=ylny
即dy/(ylny)=dx/sinx
dlny/lny=dx/sinx
所以得到
ln|lny|=ln|cscx-cotx|+c
因为y(π/2)=e
带入得到
C=0
所以得到
ln|lny|=ln|cscx-cotx|
所以|lny|=|cscx-cotx|=|tan(x/2)|
所以y=e^(tan(x/2))
也可以有y=e^(-tan(x/2))
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com