关于e是无理数的证明,可以用反证法。如果e是有理数,则可以表示成为两个互质的整数的商,即:e=p/q,其中p,q都是大于1的正整数。导出矛盾来,所以e是有无理数。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现
原创 | 2023-02-27 18:24:11 |浏览:1.6万
关于e是无理数的证明,可以用反证法。如果e是有理数,则可以表示成为两个互质的整数的商,即:e=p/q,其中p,q都是大于1的正整数。导出矛盾来,所以e是有无理数。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com