对数函数没有乘法法则。对数运算法则有三条。同底对数相加,相减及幂的对数。但有些对数相乘也可以用换底公式进行运算。即以a为底b的对数与以b为底a的对数相乘等于1。
log函数相乘运算法则
log的乘法一般都用换底公式来解决:
log(a)b=log(s)b/log(s)a(括号里的是底数)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括号里的是底数)的推导过程:
设log(s)b=M,log(s)a =N,log(a)b=R
则s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
扩展资料:
对数的加减乘除运算规则:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)