内容如下:
n就是以e为底的log,lna可写成loge a。
lg就是以10为底的log。
log(c)(a*b)=log(c)a+log(c)b --相当于同底数幂相乘,底数不变“指数相加”。
log(c)(a/b)=log(c)a/log(c)b --相当于同底数幂相除,底数不变“指数相减” 。
log(c)(a^n)=n*log(c)a --相当于幂的乘方,底数不变“指数相乘”。
换底公式推导:
设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)①
对①取以a为底的对数,有:log(a)(b)=m②
对①取以c为底的对数,有:log(c)(b)=mn③
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)。