1-√cosx的等价无穷小:x^2/4。
分析过程如下:
利用cosx=1-x^2/2+o(x^2) (1)以及
(1+x)^(1/2)=1+x/2+o(x) (2)得:
1-√cosx
=1-(1+cosx-1)^(1/2) 恒等变形
=1-(1+(cosx-1)/2)+o(cosx-1) 利用(2)式。
=(1-cosx)/2+o(x^2) 利用(1)式。
=x^2/4+o(x^2)
扩展资料:
求极限时,使用等价无穷小的条件:
(1)被代换的量,在取极限的时候极限值为0
(2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
当x→0时,等价无穷小:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~1/2x^2
(6)a^x-1~xlna
(7)e^x-1~x
(8)ln(1+x)~x
(9)(1+Bx)^a-1~aBx
(10)[(1+x)^1/n]-1~1/nx
(11)loga(1+x)~x/lna
1-根号下cosx怎么等价
这里和等价无穷小无关, 在x趋于0的时候,cosx就趋于1, 那么1+√cosx^2 当然就趋于1+1即 常数2 而1-cosx^2 则是趋于0,那么等价于1/2 *(x^2)^
2 所以就得到前面的式子等价于 1/2 *1/2 (x^2)^2