椭圆过焦点垂直于x轴的弦长公式:y²=b²(1-c²/a²)=b²(a²-c²)/a²=b⁴/a²,椭圆弦长公式是一个数学公式,关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
原创 | 2022-12-06 22:13:08 |浏览:1.6万
椭圆过焦点垂直于x轴的弦长公式:y²=b²(1-c²/a²)=b²(a²-c²)/a²=b⁴/a²,椭圆弦长公式是一个数学公式,关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com