设0≤X1≤X2≤…≤Xn≤…是一单调非负随机变量列。那么,若Xn(处处)收敛于随机变量X,则相应的数学期望列EX1,EX2,…,EXn,…收敛于X的数学期望EX,这种现象称为单调收敛定理。
控制收敛定理:如果逐点收敛的函数列的每一项都能被同一个勒贝格可积的函数“控制”(即对变量的任何取值,函数的绝对值都小于另一个函数),那么函数列的极限函数的勒贝格积分等于函数列中每个函数的勒贝格积分的极限。勒贝格控制收敛定理显示出勒贝格积分相比于黎曼积分的优越性,在数学分析和实变函数论中有很大的应用。
原创 | 2022-12-06 20:22:30 |浏览:1.6万
设0≤X1≤X2≤…≤Xn≤…是一单调非负随机变量列。那么,若Xn(处处)收敛于随机变量X,则相应的数学期望列EX1,EX2,…,EXn,…收敛于X的数学期望EX,这种现象称为单调收敛定理。
控制收敛定理:如果逐点收敛的函数列的每一项都能被同一个勒贝格可积的函数“控制”(即对变量的任何取值,函数的绝对值都小于另一个函数),那么函数列的极限函数的勒贝格积分等于函数列中每个函数的勒贝格积分的极限。勒贝格控制收敛定理显示出勒贝格积分相比于黎曼积分的优越性,在数学分析和实变函数论中有很大的应用。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com