矩阵中det是determinant的缩写,是行列式的定义,即一个n阶矩阵,那么它的行列式是一串和,每个加法元是n矩阵元素相乘。
这n个是这样取的:第一行取第1个的话,第二行可从剩下的n-1个取,以此类推,到最后一行只有一个可以取,所以,有n的阶乘个加法元。同时,每个加法元的符号还要看取的这n个数字的逆序数。
逆序是这样:一串正整数a1,a2,a3,如果a1比后面的数中x个大,逆序数就加x(逆序数初始化为0),a2如果比后面的数中y个大,逆序数再加y,如此类推,至倒数第2个。
原创 | 2022-12-06 12:29:16 |浏览:1.6万
矩阵中det是determinant的缩写,是行列式的定义,即一个n阶矩阵,那么它的行列式是一串和,每个加法元是n矩阵元素相乘。
这n个是这样取的:第一行取第1个的话,第二行可从剩下的n-1个取,以此类推,到最后一行只有一个可以取,所以,有n的阶乘个加法元。同时,每个加法元的符号还要看取的这n个数字的逆序数。
逆序是这样:一串正整数a1,a2,a3,如果a1比后面的数中x个大,逆序数就加x(逆序数初始化为0),a2如果比后面的数中y个大,逆序数再加y,如此类推,至倒数第2个。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com