在空间中,任意三个向量,如果它们不在同一平面上,且两两不共线,则在空间中的任意一向量都可用它们表示,这三个向量即为空间向量基底。两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。

如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数。