两个三角形全等的条件:三条边对应相等两条边和它们的夹角对应相等两角及其一角的对边对应相等两个角和它们的夹边对应相等直角三角形中,斜边及另一条直角边相等。
全等三角形判定
五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。
SSS(边边边):三边对应相等的三角形是全等三角形。
SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(角边角):两角及其夹边对应相等的三角形全等。
AAS(角角边):两角及其一角的对边对应相等的三角形全等。
RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。(它的证明是用SSS原理)
两个三角形约等于的条件
三角形全等的条件有:
SAS SSS AAS ASA HL
对应相等意思是:例如三角形ABC和三角形DEF
AB和DE是对应边,AB=DE
BC和EF是对应边,BC=EF
AC和DF是对应边,AC=DF
角A和角D是对应角,角A=角D
角B和角E是对应角,角B=角E
角C和角F是对应角,角C=角F
这些对应关系都可以从题目给出的三角形XXX和三角形yyy中按顺序写好
SAS是说三角形的两条边对应相等且夹角对应相等
SSS是说三角形的三条边对应相等
AAS是说三角形的两个角对应相等,且这两个角所对的那条边也对应相等
ASA是说三角形的两个角对应相等,且这两个角所夹的边也对应相等
HL是在直角三角形中说的,直角三角形的一条直角边和一条斜边对应相等