矩阵行列式(determinant of a matrix)是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。

若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kn|A|,|A*|=|A|,其中A*是A的伴随矩阵若A是可逆矩阵,则|A|=|A|。

已知行列式值如何求矩阵

公式:|A^T|=|A|,|A^(-1)|=|A|^(-1),|A*|=|A|^(n-1),书上都有计算公式,需要记住。|kA|=k^n*|A|