首先应该增加一个x的范围:一π/2<x<π/2,否則tanx并没有反函数,因为此时确定y=tanx的映射不是一一映射,从而它没有反函数。求反函数的过程分三步:

笫一步求出x(即用y来表示xⅹ=arctany

笫二步将x改写成y,y改写成ⅹ,即y=arctanx

笫三步,写出反函数的定义域,x∈R。

tanx的反函数怎么推

tanx没有反函数。

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。

反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

反函数的性质

(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称函数及其反函数的图形关于直线y=x对称

(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射

(3)一个函数与它的反函数在相应区间上单调性一致

(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

tanx的反函数怎么推

一般反三角函数都是用来表示,不直接进行计算例如:tanx=2求x就可以表示为x=arctan2。 因为cos(2π/3)=-1/2,所以arccos(-1/2)=2π/3,因为sin(-π/2)=-1,所以arcsin(-1)=-π/2。 反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

它并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。

欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。