无监督分析法主要有主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
从原理上来说PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,并且其算法的目标太明确,使得抽象后的低维数据中没有次要信息,而这些次要信息可能在更高层看来是区分数据的主要因素。所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。
原创 | 2022-12-04 14:45:03 |浏览:1.6万
无监督分析法主要有主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
从原理上来说PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,并且其算法的目标太明确,使得抽象后的低维数据中没有次要信息,而这些次要信息可能在更高层看来是区分数据的主要因素。所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com