椭圆的参数方程x=acosθ,y=bsinθ。
(一个焦点在极坐标系原点,另一个在θ=0的正方向上)
r=a(1-e^2)/(1-ecosθ)
(e为椭圆的离心率=c/a)
求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解
扩展资料
1、范围:焦点在x轴上-a≤x≤a -b≤y≤b焦点在y轴上-b≤x≤-b -a≤y≤a
2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)
4、离心率:e=c/a
5、离心率范围 0<e<1
6、离心率越大椭圆就越扁,越小则越接近于圆