解:令x=ρcosθ,y=ρsinθ,则双纽线方程(x2+y2)2=x2-y2化为:
ρ2=cos2θ
再利用双纽线在第一象限与x轴所围成的面积和其它三象限与x轴所围成的面积相等
此题考查极坐标系下平面图形面积的求法.
曲线ρ=φ(θ)及射线θ=α,θ=β围成的平面图形的面积A=∫βα12[φ(θ)]2dθ
因此必须先把双纽线的直角坐标系方程化成极坐标系的方程.
原创 | 2022-11-24 22:29:00 |浏览:1.6万
解:令x=ρcosθ,y=ρsinθ,则双纽线方程(x2+y2)2=x2-y2化为:
ρ2=cos2θ
再利用双纽线在第一象限与x轴所围成的面积和其它三象限与x轴所围成的面积相等
此题考查极坐标系下平面图形面积的求法.
曲线ρ=φ(θ)及射线θ=α,θ=β围成的平面图形的面积A=∫βα12[φ(θ)]2dθ
因此必须先把双纽线的直角坐标系方程化成极坐标系的方程.
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com