π属于实数。因为π是无理数,实数包括无理数和有理数。
有理数和无理数统称实数。每一个实数都可以用数轴上的一个点来表示反过来数轴上的每一个点都表示一个实数。实数的分类有两种,一是分类是:正数、负数、0另一种分类是:有理数、无理数。
埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发现了负数,据说中国也曾发现负数,但稍晚于印度。
直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括无限循环小数、有限小数、整数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
到了19世纪70年代,著名的德国数学家外尔斯特拉斯(1815-1897)、康托尔(1845-1918)和法国的柯西(1789-1857)及戴德金(1831-1916)等都对实数理论进行了研究,获得了几种形异而实同的实数理论,其中以戴德金分割法、康托尔的有理数「基本序列」法最有代表性。上述两法与外尔斯特拉斯的实数理论合称实数理论的三大派。