我们举例说明商的算术平方根化简的过程。
例:化简二次根式✔4/3。
解:先将被开方数4/3的分母有理化,这样可以化去被开方数的分母,(这一过程称之为分母有理化),即分子分母都乘以3,得
✔4/3=✔12/3^2=1/3✔12,再将12分解为2^2x3,而2^2开得尽方,用它的算术平方根2代替移到根号外面,作为一个因数,所以
✔4/3=2/3✔3。
小结:①被开方数不含分母
②被开方数的每一个因式(或因数的指数必须都要小于根指数2。
符合上述两个条件的二次根式叫最简二次根式。
原创 | 2022-11-22 18:15:40 |浏览:1.6万
我们举例说明商的算术平方根化简的过程。
例:化简二次根式✔4/3。
解:先将被开方数4/3的分母有理化,这样可以化去被开方数的分母,(这一过程称之为分母有理化),即分子分母都乘以3,得
✔4/3=✔12/3^2=1/3✔12,再将12分解为2^2x3,而2^2开得尽方,用它的算术平方根2代替移到根号外面,作为一个因数,所以
✔4/3=2/3✔3。
小结:①被开方数不含分母
②被开方数的每一个因式(或因数的指数必须都要小于根指数2。
符合上述两个条件的二次根式叫最简二次根式。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com