1、▽的物理意义:
(1)▽为对矢量做偏导,它是一个矢量
(2)▽U表示为矢量U的梯度
(3)▽U表示为矢量U的散度
(4)▽×U表示为矢量U的旋度
(5)若是▽平方,即做二阶偏导,则表示为哈密顿算子。
2、三角形符号倒过来(▽ )是梯度算子(在空间各方向上的全微分),是微积分中的一个微分算子,叫Hamilton算子,用来表示梯度和散度,读作Nabla。
3、▽为对矢量做偏导,它是一个矢量▽U表示为矢量U的梯度▽•U表示为矢量U的散度▽×U表示为矢量U的旋度。
扩展资料:
倒三角符号在数学中的应用:
劈形算符在数学中用于指代梯度算符。它也用于指代微分几何中的联络(可以视为更广意义上的梯度算符)。它由哈密尔顿引入。
劈形算符,倒三角算符(nabla)是一个符号,形为∇。该名字来自希腊语的某种竖琴:纳布拉琴。相关的词汇也存在于亚拉姆语和希伯来语中。
另一个对于该符号常见的名称是atled,因为它是希腊字母Δ倒过来的形状。除了atled外,它还有一个名称是del。
劈形算符在标准HTML中写为&nabla 而在LaTeX中为nabla。在Unicode中,它是十进制数8711,也即十六进制数0x2207。
倒三角是什么公式
反三角函数计算法则:arcsin(-x)=-arcsinx,arccos(-x)=π-arccosx,arccot(-x)=π-arccotx等。
反三角函数计算法则
反三角函数的运算法则
公式:
cos(arcsinx)=√(1-x²)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsinx=x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1)!!表示双阶乘
arccosx=π-(x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctanx=x-x^3/3+x^5/5-……
arctanA+arctanB
设arctanA=x,arctanB=y
因为tanx=A,tany=B
利用两角和的正切公式,可得:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)
所以x+y=arctan[(A+B)/(1-AB)]
即arctanA+arctanB=arctan[(A+B)/(1-AB)]