1、矩阵是由若干元素按行列构成的矩形“数表”,根据行列数称M*N矩阵。行列数相等的即称为方阵,因为形状为正方形,边长即为矩阵阶数。由于行列式必须是“方形”的,以及方阵比非方阵有更多普遍性的性质,所以入门接触的更多的就是n阶方阵,n阶方阵=n*n矩阵。
2、在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
3、元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵 。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
为什么矩阵是方的
1、 可逆矩阵一定是方阵, 这是线性代数范围的定义. 之后还会有广义逆矩阵, 那时候就不一定是方阵了.
2、 初等矩阵一定可逆, 因为它们的行列式都不等于0