计算两个向量叉乘公式:“a·b=x1x2+y1y2”。数学中,向量(“也称为欧几里得向量、几何向量、矢量”),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向“线段长度”:代表向量的“大小”。
拓展信息
二个向量的叉乘,向量必须是空间向量。
设向量AB=向量a-向量b,向量CD=向量a+向量b。
向量AB=符号x1、y1和z1符号,向量CD=(x2,y2,z2)。
向量AB×向量CD=(y1z2-z1y2,x2z1-x1z2,x1y2-y1x2)。
新矢量的方向与AB矢量和CD矢量决定的平面垂直。
点乘以具体:做工作、力和方向等的乘积。
叉乘的结果是一个矢量,在垂直平面上原来的两个,方向也是由两个矢量决定的。
简单地说,乘积点的结果是叉乘的结果是一个向量。
向量是一个具有大小和方向的量,也称为向量。一般说来,物理学中所谓的矢量,如速度、加速度、力等等,就是这样一个量。它不是实际意义,而是被抽象为数学中的矢量概念。在计算机中,矢量图可以无限放大,而且永远不会变形。
向量坐标叉乘运算法则
叉乘运算法则:|向量c|=|向量a×向量b|=|a||b|sin,向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。叉乘也叫向量的外积、向量积。|向量c|=|向量a×向量b|=|a||b|sin。
点乘和叉乘的区别:
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
向量a·向量b=|a||b|cos<a,b>
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。