√(1/lnx)'=-1/2√(1/lnx)×-(1/lnx)²×1/x=1/[2xln²x√(1/lnx)]。[√ln(1/x)]'=½/√ln(1/x)·1/(1/x)·-1/x²=-1/[x√ln(1/x)]。
∫lnxdx=x*lnx- ∫xdlnx=x*lnx- ∫x*(1/x)dx=x*lnx- ∫dx=x*lnx- x+c (c为任意常数)。所以:x*lnx- x+c 的导数为ln。对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。