In(1-x)的等价无穷小量是-x。这两个函数,当x→0时,都趋向于0,都是无穷小量。要证明它们是等价的。必须证明,这两函数之比,当x→0时,极限等于1。由罗必达法则,ⅠimⅠn(1-x)/-x=Iim(-1/1-x)/-1=1。所以,已知函数与-x等价无穷小。
原创 | 2022-11-17 13:17:21 |浏览:1.6万
In(1-x)的等价无穷小量是-x。这两个函数,当x→0时,都趋向于0,都是无穷小量。要证明它们是等价的。必须证明,这两函数之比,当x→0时,极限等于1。由罗必达法则,ⅠimⅠn(1-x)/-x=Iim(-1/1-x)/-1=1。所以,已知函数与-x等价无穷小。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com