三个向量任意两两组合,求得的法向量平行。
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理
三向量共面可以得到什么结论
三向量共面,例如v,u,z三向量,那么其中任意一个可以表示为其它两个的某种线性组合,即,存在常数 a,b,使得 z = av + bu。
原创 | 2022-11-15 11:42:20 |浏览:1.6万
三个向量任意两两组合,求得的法向量平行。
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理
三向量共面可以得到什么结论
三向量共面,例如v,u,z三向量,那么其中任意一个可以表示为其它两个的某种线性组合,即,存在常数 a,b,使得 z = av + bu。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com