是一个函数,角内两点形成等角关系的,它们在两边上的四个射影共圆,所共圆圆心即为这组等角点的中点。
几何学中,设点 P 是三角形 ABC 平面上一点,作直线 PA、PB 和 PC 分别关于角 A 、B 和 C 的平分线的反射,这三条反射线必然交于一点,称此点为 P 关于三角形 ABC 的等角共轭。(这个定义只对点,不是对三角形 ABC 的边。)
点 P 的等角共轭点经常记作 P*,显然 P*的等角共轭点即为 P。
原创 | 2022-11-14 19:46:49 |浏览:1.6万
是一个函数,角内两点形成等角关系的,它们在两边上的四个射影共圆,所共圆圆心即为这组等角点的中点。
几何学中,设点 P 是三角形 ABC 平面上一点,作直线 PA、PB 和 PC 分别关于角 A 、B 和 C 的平分线的反射,这三条反射线必然交于一点,称此点为 P 关于三角形 ABC 的等角共轭。(这个定义只对点,不是对三角形 ABC 的边。)
点 P 的等角共轭点经常记作 P*,显然 P*的等角共轭点即为 P。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com