与圆相切的直线方程的求法是设圆是(x-a)^2+(y-b)^2=r^2,那么在(x1,y1)点与圆相切的直线方程是:(x1-a)(x-a)+(y1-b)(y-b)=r^2。
直线和圆相切,直线和圆有唯一公共点,叫做直线和圆相切。可以通过比较圆心到直线的距离d与圆半径r的大小、或者方程组、或者利用切线的定义来证明。
原创 | 2022-11-14 18:07:38 |浏览:1.6万
与圆相切的直线方程的求法是设圆是(x-a)^2+(y-b)^2=r^2,那么在(x1,y1)点与圆相切的直线方程是:(x1-a)(x-a)+(y1-b)(y-b)=r^2。
直线和圆相切,直线和圆有唯一公共点,叫做直线和圆相切。可以通过比较圆心到直线的距离d与圆半径r的大小、或者方程组、或者利用切线的定义来证明。
Copyright 2005-2020 www.kxting.com 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com