arccosx的导数是:-1/√(1-x²)。arccos表示的是反三角函数中的反余弦。一般用于表示当角度为非特殊角时。反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
arccosx导数是什么
arccosx的导数是:-1/√(1-x²)。
解答过程如下:
(1)y=arccosx则cosy=x。
(2)两边求导:-siny·y'=1,y'=-1/siny。
(3)由于cosy=x,所以siny=√(1-x²)=√(1-x²),所以y'=-1/√(1-x²)。
其他公式
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
当 x∈[-π/2,π/2] 有arcsin(sinx)=x
arccosx导数是什么
arccosx的导数:-1/√(1-x²)。求导数时,按复合次序由最外层起,向内一层一层地对中间变量求导数,直到对自变量求导数为止。