(n一2)x180一内角和,即360。

多边形内角和:〔n-2〕×180°(n为边数)

证明:

在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。

所以n边形的内角和是n·180°-2×180°=(n-2)·180°。(n为边数)。

即n边形的内角和等于(n-2)×180°。(n为边数)