过椭圆的焦点垂直于x轴的直线与椭圆交于A,B两点,则线段AB叫做椭圆的通径,它的长度为2b^2/a。

设直线过右焦点F(c,0),将x=c代入椭圆方程,即可以解得:y=±b^2/a,那么A,B两点的纵坐标分别为b^2/a和-b^2/a,则|AB|=2b^2/a,即为通径长度。

同理可以得到,双曲线的通径长度也是AB|=2b^2/a。

抛物线的通径长度为2p。