(1)证明:∵AF平分∠BAC,∴∠CAD= ∠DAB=∠BAC. ∵点D与点A关于点E对称∴E为AD中点. BC⊥AD,∴BC为AD的中垂线,∴AC= CD∵在Rt△ACE和Rt△ABE中,∠CAD+∠ACE=∠DAB+ ∠ABE =.∠CAD= ∠DAB.∴∠ACE= ∠ABE,∴AC =AB,∴AB= CD. (2)∵∠BAC =2∠MPC,又∵∠BAC =2∠CAD,∴∠MPC=∠CAD.∵AC= CD,∴∠CAD=∠CDA,∵∠MPC=∠CDA.∴∠MPF=∠CDM,∵AC =AB,AE⊥BC,∴CE= BE,∴AM为BC的中垂线,∴CM=BM∵EM⊥BC,∴EM平分∠CMB,(等腰三角形三线合一)∴∠CME=∠BME.∴∠BME= ∠PMF,∠PMF=∠CME, ∴∠MCD= ∠F(三角形内角和).