一、lim[n→∞] y = e
解题过程如下:
令y=n/(n!)^(1/n)=[(n^n)/n!]^(1/n)
取对数:lny=(1/n)[nlnn-lnn-ln(n-1)-xxx-ln1]
=(1/n){ln[n/(n-1)]+ln[n/(n-2)]+xxx+ln[n/1]}
=(1/n){ln[1/(1-1/n)]+ln[1/(1-2/n)]+xxx+ln[1/(1-(n-1)/n)+ln[1/(1-n/n)]}
=(1/n)Σln[1/(1-i/n)] i=1到n
因此:
lim[n→∞] lny
=lim[n→∞] (1/n)Σln[1/(1-i/n)] i=1到n
=∫[0→1] ln[1/(1-x)] dx
=∫[0→1] ln(1-x) d(1-x)
=(1-x)ln(1-x) + ∫[0→1] 1 dx
=(1-x)ln(1-x) + x |[0→1]
=1
因此:lim[n→∞] y = e
二、n的阶乘的开n次方极限为无穷大,具体可以以n的阶乘的开n次方为分母,让分子为零,整体扩大n次得n的阶乘分之一,及解得极限为无穷大。
n次根号下【n^5 +4^n】=4*n次根号下【n^5 /4^n+1】
上式>1,由于指数函数增长速度比幂函数快,因此当n充分大时上式<n次根号下【2】趋向于1
原式极限为1。