解:令y=arctanx,则x=tany。 对x=tany这个方程“=”的两边同时对x求导,则 (x)'=(tany)' 1=sec²y*(y)',则 (y)'=1/sec²y 又tany=x,则sec²y=1+tan²y=1+x² 得,(y)'=1/(1+x²) 即arctanx的导数为1/(1+x²)。
原创 | 2022-10-20 19:08:15 |浏览:1.6万
解:令y=arctanx,则x=tany。 对x=tany这个方程“=”的两边同时对x求导,则 (x)'=(tany)' 1=sec²y*(y)',则 (y)'=1/sec²y 又tany=x,则sec²y=1+tan²y=1+x² 得,(y)'=1/(1+x²) 即arctanx的导数为1/(1+x²)。
Copyright 2005-2020 www.kxting.com 【开心女性】 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com