把球体方程x^2+y^2+(z-1)^2≤1打开,得x^2+y^2+z^2-2z+1≤1,即x^2+y^2+z^2≤2z,根据极坐标与直角坐标之间的转化关系x^2+y^2+z^2=r^2,z=rcosθ,代入得r^2≤2rcosθ,即r≤2cosθ,又由于z≥1,有rcosθ≥1,r≥1/cosθ,因此r的积分限为1/cosθ到2cosθ.