弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)
原创 | 2022-10-20 00:57:55 |浏览:1.6万
弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)
Copyright 2005-2020 www.kxting.com 【开心女性】 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com