設有一个圆0,有一条弦BC,有一条切线CD,切点在C。BC弦上立有圆周角CAB。连结C和0并延长到圆上,交于M点。连结MB。因MC是直径,所以角CBM=90度。而角BMC+角BCM=90度。因CD是切线,所以CD丄CM,角DCB+角BCM=90度。所以角BMC+角BMC=角DCB+角BMC,角BMC=角DCB。而角BMC=角BAC,从而角BAC=角DCB。即弦切角䓁于弦上的圆周角。
原创 | 2022-10-19 23:21:17 |浏览:1.6万
設有一个圆0,有一条弦BC,有一条切线CD,切点在C。BC弦上立有圆周角CAB。连结C和0并延长到圆上,交于M点。连结MB。因MC是直径,所以角CBM=90度。而角BMC+角BCM=90度。因CD是切线,所以CD丄CM,角DCB+角BCM=90度。所以角BMC+角BMC=角DCB+角BMC,角BMC=角DCB。而角BMC=角BAC,从而角BAC=角DCB。即弦切角䓁于弦上的圆周角。
Copyright 2005-2020 www.kxting.com 【开心女性】 版权所有 | 湘ICP备2023022655号
声明: 本站所有内容均只可用于学习参考,信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,联系邮箱:47085,1089@qq.com